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Abstract
A detailed analysis of the finite-size effects on the bulk critical behaviour of the
d-dimensional mean spherical model confined to a film geometry with finite
thickness L is reported. Along the finite direction different kinds of boundary
conditions are applied: periodic (p), antiperiodic (a) and free surfaces with
Dirichlet (D), Neumann (N) and a combination of Neumann and Dirichlet
(ND) on both surfaces. A systematic method for the evaluation of the
finite-size corrections to the free energy for the different types of boundary
conditions is proposed. The free energy density and the equation for the
spherical field are computed for arbitrary d. It is found, for 2 < d < 4, that
the singular part of the free energy has the required finite-size scaling form at
the bulk critical temperature only for (p) and (a). For the remaining boundary
conditions the standard finite-size scaling hypothesis is not valid. At d = 3,
the critical amplitude of the singular part of the free energy (related to the
so-called Casimir amplitude) is estimated. We obtain �(p) = −2ζ(3)/(5π) =
−0.153 051 . . . ,�(a) = 0.274 543 . . . and �(ND) = 0.019 22 . . . , implying a
fluctuation-induced attraction between the surfaces for (p) and repulsion in the
other two cases. For (D) and (N) we find a logarithmic dependence on L.

PACS numbers: 05.70.Fh, 05.70.Jk, 75.40.–s

1. Introduction

Over the last 30 years there has been an increasing interest in the critical behaviour of systems
(fluids, magnets . . . ) confined between two infinite parallel plates i.e. films. Such systems
can be regarded as d-dimensional generalization of two (d − 1)-dimensional walls separated
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by matter of thickness L. The so-called thermodynamic Casimir effect related to fluctuation-
induced long-ranged forces between the plates was, and still is, the central theme of these
investigations both experimentally and theoretically2. This effect was first predicted by Fisher
and de Gennes (1978) in their investigation on a confined critical binary liquid at its bulk
demixing point. They showed that the reduced free-energy per unit area contains a term of the
form �(τ)L−d+1, where �(τ) is the so-called Casimir amplitude by analogy with the Casimir
effect in vacuum fluctuations of the electromagnetic field between two metallic plates (Casimir
1948). It is a universal quantity that depends on the bulk universality class and the boundary
conditions (τ ) imposed on the confining walls (Privman and Fisher 1984, Singh and Pathria
1985a). The different types of boundary conditions are in turn related to distinct universality
classes of surface critical behaviour depending on the behaviour of the order parameter at the
surfaces bounding the system and some additional surface properties (Diehl 1997).

In general, according to Privman and Fisher (1984), Singh and Pathria (1985a) the singular
part of the free energy density of a finite (in one or more directions) d-dimensional system
with linear size L, near the bulk critical point Tc, may be expressed in the form

f
(τ)
s,d (t, h;L) ≈ L−dY (τ)(c1tL

1/ν, c2hL�/ν), (1.1)

where t and h are related to the temperature, T, and the external magnetic field, H, via

t = T − Tc

Tc

, h = H

kBT
. (1.2)

The arguments of Y (τ)(x1, x2) are appropriate scaled variables, ν and � are the usual critical
exponents, while all the details of the system are incorporated in the non-universal quantities c1

and c2. Then the function Y (τ)(x1, x2) is a universal scaling function, whose exact expression
depends upon the number of finite directions, the bulk universality class and the boundary
conditions (τ ) to which the system is subjected. For a system confined to a film geometry, at
T = Tc, the Casimir amplitude coincides with the critical amplitude of the singular part of the
free energy density, i.e.

�(τ) = Y (τ)(0, 0). (1.3)

The spherical model of Berlin and Kac (1952) was initially designed to mimic the critical
properties of the Ising model. It has been obtained by requiring the spins to be continuous
variables subject to a global constraint (the sum of the squares of spins at each lattice site is
equal to the total number of sites N) rather than a local one (the square of the spin at each
site is exactly 1). Later it was shown that the free energy of this model can be obtained
as a limiting case of that of the Heisenberg model with infinite number of spin components
(Stanley 1968). The equivalence between the Heisenberg model with infinite spin components
and the spherical model remains valid for finite systems, as long as one considers boundary
conditions that preserve the translational invariance of the lattice (Knops 1973). Lewis and
Wannier (1952) proposed to simplify the spherical model by requiring the global constraint
of Berlin and Kac to be obeyed in the sense of an ensemble average. This model is generally
known as the mean spherical model.

Because of its exact solubility the ferromagnetic mean spherical model has been
extensively used to gain insights into the critical properties of finite (in one or more
directions) systems3. Periodic boundary conditions, implying ferromagnetic interactions of
spins belonging to both boundaries on the finite directions, have been by far the most used

2 The literature on the thermodynamic Casimir effect can be found in Grüneberg and Diehl (2008) and references
therein.
3 For an extensive list of literature see (Barber and Fisher 1973, Singh and Pathria 1985a, Privman 1990, Chamati
et al 1998, Brankov et al 2000) and references therein.
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boundary conditions. These allow for analytic treatment of problems related to the finite-size
scaling theory (Privman et al 1991, Brankov et al 2000). In addition to periodic boundary
conditions, antiperiodic boundary conditions have also been used (Barber and Fisher 1973,
Singh and Pathria 1985b) to investigate the finite-size scaling properties of the ferromagnetic
mean spherical model. The aforementioned boundary conditions do not break the translational
invariance of the model in the absence of a magnetic field. Much less has been achieved in
the case of nonperiodic (free) boundary conditions. These are believed to be more relevant to
real systems, especially to systems confined between parallel plates. The ferromagnetic mean
spherical model of finite thickness has been investigated in the case of Dirichlet boundary
conditions by Barber and Fisher (1973), Barber (1974), Danchev et al (1997), Chen and
Dohm (2003), Dantchev and Brankov (2003) and Neumann boundary conditions in Barber
et al (1974), Danchev et al (1997), Dantchev and Brankov (2003). Barber and Fisher (1973),
and Barber (1974) investigated the scaling properties of the mean spherical model with finite
thickness using a method originally devised by Barber and Fisher (1973). They obtained
explicit forms of the equation for the spherical field at three, four and five dimensions,
separately. The method was extended to the study of the finite-size effects in the case of
Neumann and Neumann–Dirichlet boundary conditions by Danchev et al (1997). Chen and
Dohm (2003) argued that the results of Barber and Fisher (1973), Barber (1974) for Dirichlet
boundary conditions were incorrect at three dimensions far from the critical point. Later,
the equation for the spherical field of Barber and Fisher (1973) was rederived by Dantchev
and Brankov (2003). It should be mentioned, however that the derivation of Dantchev and
Brankov (2003) is based on an improved method of Barber and Fisher (1973). On the other
hand, in Barber and Fisher (1973), Barber (1974), Danchev et al (1997), Dantchev and Brankov
(2003) the free energy density for the different kinds of boundary conditions was obtained by
integrating the equation for the spherical field leading to complicated integral representations.

In the present paper we propose a different method to treat the finite size effects in the
mean spherical model of finite thickness. The method is a generalization of that devised
by Singh and Pathria (1985a) for periodic boundary conditions. It applies to antiperiodic,
Dirichlet, Neumann boundary conditions imposed on both surfaces bounding the system and
a combination of Dirichlet and Neumann boundary conditions on each surface. The method
is quite general and is used for arbitrary dimension. Furthermore, the finite-size contributions
to the free energy density are obtained directly form the corresponding general expression
rather than through integration of the equation for the spherical field. We anticipate here that
from our results we recover the particular cases of Barber and Fisher (1973), Barber (1974),
Danchev et al (1997), Dantchev and Brankov (2003) but not the results of Chen and Dohm
(2003). We will return to these points later in the paper.

The rest of the paper is structured as follows: in section 2 we define the model and
present the expressions for the free energy density and the equation for the spherical field
for the different kinds of boundary conditions. In section 3 we present in detail how the
method applies to the case of periodic boundary conditions and compare our results with
those available in the literature. In sections 4 through 7 we extend the method for arbitrary
dimensions to the other boundary conditions and compare with the results obtained by other
authors using different methods. Finally in section 8 we summarize our results.

2. The model

We consider the mean spherical model on a d-dimensional lattice confined to a film geometry
i.e. infinite in d − 1 dimensions and of finite thickness L in the remaining dimension with

3
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volume V = L × ∞d−1. The linear size of the lattice is measured in units of the lattice
constant, which will be taken equal to 1. The model is defined through

H = −1

2

∑
ij

Jij sisj − H
∑

i

si +
1

2
µ

∑
i

s2
i , (2.1)

where si ≡ si(r, z), the spin at site i, is a continuous real variable (−∞ � si � ∞) with
coordinates r in the d − 1 infinite ‘parallel’ planes and z in the finite lateral direction. Jij is
the interaction matrix between spins at sites i and j , and H is an ordering external magnetic
field. Finally the field µ is introduced so as to ensure the spherical constraint∑

i

〈
s2
i

〉 = N, (2.2)

where 〈· · ·〉 denotes standard thermodynamic averages computed with the Hamiltonian H and
N the total number of spins on the lattice.

Along the finite z direction we impose different kinds of boundary conditions which we
will denote collectively by τ . For a lattice system this means

(p) periodic: s(r, 1) = s(r, L + 1);
(a) antiperiperiodic: s(r, 1) = −s(r, L + 1);

(D) Dirichlet: s(r, 0) = s(r, L + 1) = 0;
(N ) Neumann: s(r, 0) = s(r, 1) and s(r, L) = s(r, L + 1);

(ND) Neumann–Dirichlet: s(r, 0) = s(r, 1) and s(r, L + 1) = 0.

For nearest neighbour interactions and under the above boundary conditions the
Hamiltonian (2.1) may be diagonalized by plane waves parallel to the confining plates and
appropriate eigenfunctions ϕ(τ)

n (z) using the representation

si(r, z) =
∑

n

∫ 2π

0

dq1

2π
· · ·

∫ 2π

0

dqd−1

2π
sq,n eiq·rϕ(τ)

n (z), (2.3)

where the integrals over qi s, the components of q, are restricted to the first Brillouin zone of
the hypercubic lattice of dimension d − 1. The orthogonal eigenfunctions read

ϕ(p)
n (z) = 1√

L
exp

[
i
2π

L
nz

]
, n = 0, . . . , L − 1; (2.4a)

ϕ(a)
n (z) = 1√

L
exp

[
i
2π

L

(
n +

1

2

)
z

]
, n = 0, . . . , L − 1; (2.4b)

ϕ(D)
n (z) =

√
2

L + 1
sin

[ π

L + 1
(n + 1)z

]
, n = 0, . . . , L − 1; (2.4c)

ϕ(N)
n (z) =

⎧⎪⎨
⎪⎩

L−1/2, n = 0,√
2

L
cos

[π

L
nz

]
, n = 1, . . . , L − 1;

(2.4d)

ϕ(ND)
n (z) = 2√

2L + 1
cos

[
2π

2L + 1

(
n +

1

2

)
z

]
; n = 0, . . . , L − 1. (2.4e)

The eigenmodes associated with the above eigenfunctions are given by

ω(p)
n = −2 + 2 cos

[
2π

L
n

]
; (2.5a)
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ω(a)
n = −2 + 2 cos

[
2π

L

(
n +

1

2

)]
; (2.5b)

ω(D)
n = −2 + 2 cos

[ π

L + 1
(n + 1)

]
; (2.5c)

ω(N)
n = −2 + 2 cos

[π

L
n
]
; (2.5d)

ω(DN)
n = −2 + 2 cos

[
2π

2L + 1

(
n +

1

2

)]
. (2.5e)

Those corresponding to the diagonalized interaction matrix are λ(τ)
n = 2 + ω

(τ)
0 .

At zero field, the free energy density of the mean spherical model under the above
boundary conditions imposed along the finite lateral size has the general expression (obtained
via the Legendre transformation)

βF
(τ)
d (T , L;φ) = 1

2
ln K +

1

2L

L−1∑
n=0

Ud−1
(
φ + ω

(τ)
0 − ω(τ)

n

) − 1

2
K

(
φ + ω

(τ)
0

) − K, (2.6)

where K = βJ = J/kBT and

Ud(z)=
∫ 2π

0

dθ1

2π
· · ·

∫ 2π

0

dθd

2π
ln

[
z + 2

d∑
i=1

(1 − cos θi)

]
. (2.7)

In (2.6), the shifted spherical field, defined by

φ = µ/J − λ
(τ)
0 ,

is the solution of the spherical constraint

K = 1

L

L−1∑
n=0

Wd−1
(
φ + ω

(τ)
0 − ω(τ)

n

)
, (2.8)

with the bulk function

Wd(z) =
∫ 2π

0

dθ1

2π
· · ·

∫ 2π

0

dθd

2π

1

z + 2
∑d

i=1(1 − cos θi)
, (2.9)

whose asymptotic behaviour has been studied in considerable detail for z ∈ C in Barber and
Fisher (1973).

The bulk limit is obtained from (2.8) by letting the lateral size L go to infinity. This
allows us to investigate the thermodynamics of the ferromagnetic mean spherical model in the
thermodynamic limit. Here we shall not enter into the investigation of the thermodynamic
properties (the interested reader may refer to Pathria (1996)). It is worth mentioning that the
present model undergoes a continuous phase transition at a bulk critical point determined by

Kc,d = Wd(0), (2.10)

for d > 2. On the other hand for d > 4 the model exhibits mean-field-like critical behaviour.
Recently an efficient method to estimate the Watson integral Wd(0) and the associated
logarithmic integral for d-dimensional hypercubic lattice has been proposed by Joyce and
Zucker (2001).

Before embarking into the investigation of the finite-size effects for the different boundary
conditions a few comments are in order:

(1) For the evaluation of the finite-size contributions to the bulk expressions of the free
energy and the equation for the spherical field the case of periodic boundary conditions is the

5
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simplest. A powerful method to treat these sums was proposed in Singh and Pathria (1985a). It
was found that in this case the correlation length ξL of the finite system is given by ξL = φ−1/2

(Singh and Pathria 1987).
(2) The same method was successfully extended to the case of antiperiodic boundary

conditions (Singh and Pathria 1985b). However, the calculations were done in the absence of
the lowest mode ω

(τ)
0 in (2.6) and (2.8). Later by investigating the correlation function (Allen

and Pathria 1993), it was found that the correlation length ξL and the root square of spherical
field φ are no more connected by a simple relation as it is the case for periodic boundary
conditions. It was suggested that the correlation length is in fact related to the solution of the
equation for spherical field shifted by the asymptotic behaviour of ω

(τ)
0 i.e. π2

L2 .
(3) The remaining boundary conditions have attracted less attention (Barber and Fisher

1973, Barber 1974, Barber et al 1974, Danchev et al 1997, Brankov et al 2000, Chen and
Dohm 2003, Dantchev and Brankov 2003). Apart from the paper by Chen and Dohm (2003),
all investigations were specialized to d = 3 using an approach based on Barber and Fisher
(1973). For arbitrary d and Dirichlet boundary conditions, a recent work by Chen and Dohm
(2003) proposed a different method and claimed that the results of Barber and Fisher (1973),
obtained at d = 3, were incorrect.

Here we generalize the method of Singh and Pathria (1985a) for periodic boundary
conditions to the other boundary conditions. We investigate the finite-size effects of the free
energy density (2.6) and the equation for the spherical field (2.8) in each case for arbitrary
dimension and comment on the results of the aforementioned papers.

3. Periodic boundary conditions

For the sake of completeness we will derive here the relevant expressions for the mean spherical
model of finite thickness under periodic boundary conditions for arbitrary dimensionality. The
derivation is adapted from Singh and Pathria (1985a) (see also Chamati et al (1998)). The
explicit expressions for the free energy density (2.6) and the equation for the spherical field
(2.8) are given by

βF
(p)

d (T , L) = 1

2
ln K +

1

2L

L−1∑
n=0

Ud−1

(
φ + 2

[
1 − cos

(
2π

L
n

)])
− 1

2
Kφ − K, (3.1a)

and

K = 1

L

L−1∑
n=0

Wd−1

(
φ + 2

[
1 − cos

(
2π

L
n

)])
, (3.1b)

respectively. In this case ω
(p)

0 = 0.
Using the integral representations

z−1 =
∫ ∞

0
e−zt (3.2a)

and

ln z =
∫ ∞

0

dt

t
[e−t − e−zt ] (3.2b)

we can separate the expressions for the free energy density (3.1a) and the equation for the
spherical field (3.1b) into the corresponding bulk expressions and the associated finite-size

6
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contributions. Let us illustrate how this works for the equation for the spherical field. With
the aid of (3.2a) the sum entering this equation can be written as

S(p)

d,L(φ) =
L−1∑
n=0

Wd−1

[
φ + 2

(
1 − cos

2π

L
n

)]

=
∫ 2π

0

dθ1

2π
· · ·

∫ 2π

0

dθd−1

2π

∫ ∞

0
dz exp

{
−z

[
φ + 2 + 2

d−1∑
i=1

(1 − cos θi)

]}
Q

(p)

L (2z),

(3.3)

with

Q
(p)

L (z) =
L−1∑
n=0

exp

[
z cos

2π

L
n

]
. (3.4)

Note that the summand in (3.4) is a periodic function of period 2π . Further we use (a
generalization of) the Poisson summation formula, namely

b∑
a

f (n) =
∞∑

l=−∞

∫ b

a

e2π ilnf (n) dn +
1

2
f (a) +

1

2
f (b) (3.5)

to get the identity

Q
(p)

L (z) =
L−1∑
n=0

exp

[
z cos

2π

L
n

]
= L

∞∑
l=−∞

ILl(z), (3.6)

where Iν(x) stands for the modified Bessel function of the first kind (Abramowitz and Stegun
1972).

Substituting (3.6) into (3.3) we obtain

S(p)

d,L(φ) = L

∞∑
l=−∞

∫ ∞

0
dz e−zφ[e−2zI0(2z)]d−1 e−2zILl(2z)

= LWd(φ) + 2L

∞∑
l=1

∫ ∞

0
dz e−zφ[e−2zI0(2z)]d−1 e−2zILl(2z), (3.7)

where we have used the integral representation

Wd(φ) =
∫ ∞

0
dz e−zφ[e−2zI0(2z)]d (3.8)

and the relation I−2p(x) = I2p(x) (Abramowitz and Stegun 1972).
For large L, using the asymptotic expansion (Singh and Pathria 1985a)

Iν(x) = ex−ν2/2x

√
2πx

[
1 +

1

8x
+

9 − 32ν2

2!(8x)2
+ · · ·

]
, (3.9)

after some straightforward steps, keeping only leading terms in L−1, we get

S(p)

d,L(φ) = LWd(φ) + L
4

(4π)
d
2

φ
d
2 −1

∞∑
l=1

Kd
2 −1

(
lL

√
φ
)

(
1
2 lL

√
φ
) d

2 −1
, (3.10)

where Kν(x) is the modified Bessel function of the second kind (Abramowitz and Stegun
1972).
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Collecting the above results the equation for the spherical field reads

K = Wd(φ) +
4

(4π)
d
2

φ
d
2 −1

∞∑
l=1

Kd
2 −1(lL

√
φ)(

1
2 lL

√
φ
) d

2 −1
. (3.11)

The finite-size behaviour of this equation has been studied in great detail by Chamati et al
(1998) for arbitrary d for different geometries including questions like dimensional crossover,
finite-size shift of the bulk critical temperature, etc. In particular it was found that the finite-
size shift obeys the predictions of the finite-size scaling. For 2 < d < 4, using the asymptotic
behaviour

Wd(z) = Wd(0) +
1

(4π)d/2


[
2 − d

2

]
z(d−2)/2 + O(z(d−1)/2), (3.12)

equation (3.11) takes the scaling form

� = yd−2

(4π)d/2

⎡
⎣∣∣∣∣

[
2 − d

2

]∣∣∣∣ − 4
∞∑
l=1

Kd
2 −1 (ly)(

1
2 ly

) d
2 −1

⎤
⎦ , (3.13)

where we have introduced the scaling variable y = L
√

φ and � = L1/ν(Kc,d − K) with
ν = (d − 2)−1—the critical exponent measuring the divergence of the correlation length.
Consequently we have a solution of the form ξL = φ−1/2 = Lfp(�), where f(p) is a universal
scaling function. For arbitrary d the nature of the scaling function f(p)(�) can be determined
only numerically (see e.g. Chamati et al (1998)). For the particular case d = 3, equation
(3.13) takes a simple form

2π� = ln 2 sinh
y

2
. (3.14)

The solution of this equation leads to the universal scaling function

y = g(p)(�) = 2 arcsinh
(

1
2 e2π�

)
(3.15)

At the critical point, � = 0, we obtain the critical amplitude of the finite-size correlation
length ξL:

y0 = g(p)(0) = 2 ln
1 +

√
5

2
. (3.16)

The finite-size contributions to the free energy for any d can be accounted for by using
the integral representation (3.2b). The aim here is to transform the sum

P(p)

d,L(φ) =
L−1∑
n=0

Ud−1

[
φ + 2

(
1 − cos

2π

L
n

)]

=
L−1∑
n=0

∫ 2π

0

dθ1

2π
· · ·

∫ 2π

0

dθd−1

2π
ln

[
φ + 2

(
1 − cos

2π

L
n

)
+ 2

d−1∑
i=1

(1 − cos θi)

]

(3.17)

into a more tractable form suitable for analytic treatment. After some straightforward algebra
along the lines explained above, including the use of the identity (3.6), we arrive at

P(p)

d,L(φ) = LUd(φ) − L
4

(4π)
d
2

φ
d
2

∞∑
l=1

Kd
2
(lL

√
φ)(

1
2 lL

√
φ
) d

2

. (3.18)

8
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Using (3.18) for the large L asymptotic behaviour of the free energy density (3.1a) we get

βF
(p)

d (T , L;φ) = βFd(T ;φ) − 2

(4π)
d
2

φ
d
2

∞∑
l=1

Kd
2
(lL

√
φ)(

1
2 lL

√
φ
) d

2

, (3.19)

where

Fd(T ;φ) = lim
L→∞

F
(τ)
d (T , L;φ) = 1

2β
[ln K + Ud(φ) − Kφ − 2K] (3.20)

is the bulk free energy density.
For 2 < d < 4, in the vicinity of the bulk critical point, we have the expansion

Ud(z) = Ud(0) + Kc,dz +
1

(4π)d/2

2

d


[
2 − d

2

]
zd/2 + O(z(d+1)/2). (3.21)

Then the singular part of the free energy density (3.19) takes the scaling form

βf
(p)

s,d (y, �) = 1

2
L−d

⎡
⎣�y2 +

2yd

(4π)d/2

⎛
⎝ 1

d


[
2 − d

2

]
− 2

∞∑
l=1

Kd
2
(ly)(

1
2 ly

) d
2

⎞
⎠

⎤
⎦ , (3.22)

where y is the solution of (3.13). Thus, the scaling behaviour of the free energy density is
consistent with the finite-size scaling hypothesis (1.1). The Casimir amplitude for d = 3
i.e. the critical amplitude of the singular part of the free energy density can be computed
analytically, having in mind the solution (3.16), with the aid of polylogarithmic identities
(Sachdev 1993). The result is (Sachdev (1993), Danchev (1998)):

�(p) = −2ζ(3)

5π
= −0.153 051 . . . . (3.23)

This value is compatible with estimations obtained for more realistic O(n) models using
different approaches. For more details we refer the reader to Grüneberg and Diehl (2008).

As one would expect from previous studies on the mean spherical model, the results
obtained for periodic boundary conditions are in conformity with the finite-size scaling
hypothesis. In the following we will extend the method described here to the other
boundary conditions. The generalization is somehow straightforward, however we will see
the appearance of some subtleties that need careful consideration.

4. Antiperiodic boundary conditions

The explicit expressions for the free energy density (2.6) and the equation for the spherical
field (2.8) for arbitrary dimension read

βF
(a)
d (T , L;φ) = 1

2
ln K +

1

2L

L−1∑
n=0

Ud−1
[
φ + ω

(a)
0 − ω(a)

n

] − 1

2
K

(
φ + ω

(a)
0

) − K, (4.1a)

and

K = 1

L

L−1∑
n=0

Wd−1
[
φ + ω

(a)
0 − ω(a)

n

]
. (4.1b)

respectively. Here the lowest eigenmode ω
(a)
0 	= 0, in contrast to the case of periodic boundary

conditions.
Unlike the analysis of Singh and Pathria (1985b) we shall not omit ω

(τ)
0 = −2 + 2 cos π

L

from our equations, rather we will use the combination σ (a) = φ + ω
(a)
0 as a variable in our

9
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consideration of the sums entering (4.1a) and (4.1b). We will see that this is crucial to our
further treatment. Indeed, in our notations, φ is expected to define the correlation length
and no other definition for this quantity is necessary as it has been suggested in Allen and
Pathria (1993), where the behaviour of the order parameter correlation function for the finite
mean-spherical model with antiperiodic boundary conditions has been investigated in detail.

The analysis of section 3 for periodic boundary conditions can be applied to the sums

S(a)
d,L[σ (a)] =

L−1∑
n=0

Wd−1
[
σ (a) − ω(a)

n

]
(4.2a)

P(a)
d,L[σ (a)] =

L−1∑
n=0

Ud−1
[
σ (a) − ω(a)

n

]
(4.2b)

appearing on the left-hand side of (4.1a) and (4.1b), respectively. Now instead of the identity
(3.6) we use (Singh and Pathria (1985b))

Q
(a)
L (z) =

L−1∑
n=0

exp

[
z cos

2π

L

(
n +

1

2

)]
= L

∞∑
l=−∞

cos(πl)ILl(z), (4.3)

to end up with the final expressions

βF
(a)
d (T , L;φ) = βFd

(
T ;φ + ω

(a)
0

) − 2

(4π)d/2
(φ + ω(a))

d
2

∞∑
l=1

(−1)l
K d

2

(
lL

√
φ + ω

(a)
0

)
(

1
2 lL

√
φ + ω

(a)
0

) d
2

(4.4a)

and

K = Wd

(
φ + ω

(a)
0

)
+

4

(4π)d/2
(φ + ω(a))

d
2 −1

∞∑
l=1

(−1)l
K d

2 −1

(
lL

√
φ + ω

(a)
0

)
(

1
2 lL

√
φ + ω

(a)
0

) d
2 −1

. (4.4b)

For 2 < d < 4, making use of the asymptotic expansion (3.12), for large L and in the
vicinity of the bulk critical point, with φ + ω

(a)
0 < 1, we have the scaling behaviour

� = (y2 − π2)
d−2

2

(4π)d/2

⎡
⎣∣∣∣∣

[
2 − d

2

]∣∣∣∣ − 4
∞∑
l=1

(−1)l
K d

2 −1(l
√

y2 − π2)(
1
2 l

√
y2 − π2

) d
2 −1

⎤
⎦ , (4.5)

where we have used ω
(a)
0 ≈ −π2

L2 . Following the analysis of Allen and Pathria (1993) it is
easy to show that

√
φ coincides with the inverse of the finite-size correlation length ξL. In this

case, the solution of (4.5) may be written as ξL = Lf(a)(�), where f(a) is a universal scaling
function.

The critical temperature of the film corresponds to y = π i.e. φ = (
π
L

)2
, which is the

asymptotic of the lowest mode ω
(a)
0 for large L. Setting y = π in equation (4.5), we find that

the critical point of the film is shifted from the bulk one by a quantity proportional to L−1/ν in
agreement with the finite-size scaling predictions.

For arbitrary dimension d, equation (4.5) can be solved only numerically. Here we will
specialize to the three-dimensional system, which allows analytic treatment. For d = 3,
equation (4.5) transforms into

2π� = ln 2 cosh 1
2

√
y2 − π2, (4.6)

10
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whose positive solution reads

y = g(a)(�), (4.7)

with the universal scaling function

g(a)(�) =
(

π2 + 4

[
arccosh

(
1

2
e2π�

)]2
)1/2

. (4.8)

At the bulk critical point, i.e. � = 0, we obtain

y0 = g(a)(0) =
√

5
3 π. (4.9)

This is the critical amplitude of the finite-size correlation length ξL. This result has been
obtained also by Allen and Pathria (1993) using a different definition for the correlation length
imposed by the choice of a different initial equation for the spherical field.

Using the asymptotic behaviour (3.21), valid for 2 < d < 4, and the fact that y is the
solution of equation (4.5), we may write the singular part of the free energy density (4.1a) in
a scaling form as

f
(a)
s,d (y, �)Ld = 1

2
�(y2 − π2) +

(y2 − π2)
d
2

(4π)d/2

×
⎛
⎝ 1

d


[
2 − d

2

]
− 2

∞∑
l=1

(−1)l
K d

2
(l
√

y2 − π2)(
1
2 l

√
y2 − π2

) d
2

⎞
⎠ . (4.10)

In accordance with the finite-size scaling hypothesis (1.1). For the important case d = 3, its
critical amplitude at the bulk critical temperature and consequently the corresponding Casimir
amplitude for antiperiodic boundary conditions is4

�(a) = 0.274 543 . . . . (4.11)

Note that the Casimir amplitude here is positive in contrast to the case of periodic boundary
conditions, see e.g. (3.23), but approximately twice higher in magnitude. This result is
compatible with that of Krech and Dietrich (1992) obtained using renormalization group.

Before closing this section let us mention that the expressions for periodic boundary
conditions and those corresponding to antiperiodic boundary conditions may be written in
unified general forms with a parameter characteristic of twisted boundary conditions. In the
remainder of the paper we will use these methods to analyse the finite-size effects of the mean
spherical model with a film geometry subject to more realistic boundary conditions.

5. Dirichlet boundary conditions

5.1. Equation for the spherical field

Here we will evaluate the finite-size contributions of the sum appearing in (2.8) in the case of
Dirichlet boundary conditions for arbitrary d. We start with

S(D)
d,L (φ) =

L∑
n=1

Wd−1

[
φ + 2 cos

π

L + 1
− 2 cos

πn

L + 1

]
, (5.1)

4 This result was obtained independently by Dantchev and Grüneberg (2008).

11
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which upon extending the sum to n = 2L + 1 may be written

S(D)
d,L (φ) = 1

2

2L+1∑
n=0

Wd−1

[
φ + 2 cos

π

L + 1
− 2 cos

πn

L + 1

]

−1

2
Wd−1

[
φ + 2 cos

π

L + 1
+ 2

]
− 1

2
Wd−1

[
φ + 2 cos

π

L + 1
− 2

]
. (5.2)

The last two terms correspond to n = L + 1 and n = 0, respectively. Comparing with (3.3) we
find that the sum on the right-hand side is exactly S(p)

d,2L+2

(
φ + ω

(D)
0

)
corresponding to periodic

boundary conditions with a film of thickness 2L + 2. This suggests that the analysis of the
sum appearing in (5.2) can be performed following the method outlined in section 3 (see e.g.
(3.10)).

The equation for the spherical field follows from (2.8), (5.2) and (3.10). This is (to the
leading order in L−1)

K = Wd

(
φ − π2

L2

)
+

1

L

[
Wd

(
φ − π2

L2

)
− 1

2
Wd−1

(
φ − π2

L2
+ 4

)
− 1

2
Wd−1

(
φ − π2

L2

)]

+
4

(4π)d/2

(
φ − π2

L2

) d
2 −1 ∞∑

l=1

Kd
2 −1

(
2lL

√
φ − π2

L2

)
(
lL

√
φ − π2

L2

) d
2 −1

, (5.3)

where we have used the large asymptotic behaviour ω
(D)
0 ≈ −π2

L2 . Equation (5.3) is the general
form of the equation for the spherical field for arbitrary dimension d. Note that the right-hand
side is composed of a bulk term, a size-dependent surface term

Wd

(
φ − π2

L2

)
− 1

2
Wd−1

(
φ − π2

L2
+ 4

)
− 1

2
Wd−1

(
φ − π2

L2

)
(5.4)

and finite-size corrections. Here, all the quantities are function of the combination φ − π2

L2 .
Thus, the critical properties of the mean spherical model of finite thickness under Dirichlet
boundary conditions should be investigated using φ− π2

L2 as a small parameter keeping in mind
that φ 
 1 and L � 1.

The scaling behaviour of (5.3) depends strongly upon d, indeed the asymptotic expansion
of Wd−1(z) for small argument takes different expressions for different values of d. We
first start with the important three-dimensional case that has been extensively studied in the
literature. Later we will extend our analysis to the interval 3 < d < 4. This constraint for
d ensures the validity of the asymptotic expansion (3.12) for Wd(z) and Wd−1(z) at the same
time.

For d = 3, using (3.12) with d = 3 and

W2(z) = 1

4π
(5 ln 2 − ln z) + O(z ln z), (5.5)

from (5.3) we have

K − Kc,3 = 1

L

[
Kc,3 − 1

2
W2(4) − 5 ln 2

8π

]
− 1

4πL
ln L − 1

4πL
ln

sinh 2
√

L2φ − π2√
L2φ − π2

, (5.6)

which, apart from an unimportant numerical factor that enters in the definition of K, coincides
with equation (4.69) of Barber and Fisher (1973) obtained at d = 3 via a different method.
Consequently our result disagrees with that of Chen and Dohm (2003), where it has been argued
that equation (4.69) of Barber and Fisher (1973) was incorrect far from Kc,3.5 At the bulk

5 The origin of this discrepancy is discussed in Chen and Dohm (2003).
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critical point, solving (5.6), with the assumption L
√

φ 
 1, we find φ ∼ L−3 in agreement
with Chen and Dohm (2003), Dantchev and Brankov (2003). It is worth mentioning that (5.6)
cannot be put in a scaling form because of the logarithmic dependence on L. However, if one
considers a shifted critical point that absorbs the term proportional to ln L and the surface
contributions according to Barber and Fisher (1973)

K
(D)
s,3 = Kc,3 +

1

L

[
Kc,3 − 1

2
W2(4) − 7 ln 2

8π

]
− 1

4πL
ln L, (5.7)

it is possible to recover the scaling behaviour. Note that expression (5.7) does not conform
with the predictions of the theory of finite-size scaling for the finite-size shift of the critical
temperature, since there is a term containing ln L.

In the case 3 < d < 4, using the asymptotic expansion (3.12), the equation for the
spherical field (5.3) may be written as

−� = Ld−3

[
Wd(0) − 1

2
Wd−1(0) − 1

2
Wd−1(4)

]

+
1

(4π)d/2
(y2 − π2)

d
2 −1

[


(
2 − d

2

)
− √

π

(
3 − d

2

)
(y2 − π2)−

1
2

]

+
1

(4π)d/2
(y2 − π2)

d
2 −1

∞∑
l=1

Kd
2 −1(2l

√
y2 − π2)

(l
√

y2 − π2)
d
2 −1

, (5.8)

where we have introduced the usual notations � = L1/ν(Kc,d − K) and y = L
√

φ. The first
term on the right-hand side shows that the standard finite-size scaling hypothesis breaks down
in the vicinity of the bulk critical temperature. It is likely that the introduction of a scaling
function depending on � and an additional variable to take care of the term proportional to
Ld−3 aiming at the modification of the finite-size scaling would cure this deficiency.

From equation (5.3) it is easy to see that leading large L behaviour of the finite-size shift
from the bulk critical temperature to the one where the film is expected to have a singular
behaviour is L−1. This result, valid for any dimension, shows that the finite-size scaling
hypothesis is violated as it has been pointed out by Brézin (1983).

5.2. Free energy density

Let us now turn to the evaluation of the free energy density (2.6). We need the asymptotic
behaviour of the sum

P(D)
d,L (φ) =

L∑
n=1

Ud−1

[
φ + 2 cos

π

L + 1
− 2 cos

πn

L + 1

]
, (5.9)

entering expression (2.6) of the free energy. Here again we extend the sum to n = 2L + 1, to
get

P(D)
d,L (φ) = 1

2

2L+1∑
n=0

Ud−1

[
φ + 2 cos

π

L + 1
− 2 cos

πn

L + 1

]

− 1

2
Ud−1

[
φ + 2 cos

π

L + 1
+ 2

]
− 1

2
Ud−1

[
φ + 2 cos

π

L + 1
− 2

]
. (5.10)
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The sum on the right-hand side of (5.10) corresponds to P
(p)

d,2L+2

(
φ + ω

(D)
0

)
from (3.17).

Then from (3.18) and (5.10) we get the free energy density

βF
(D)
d (T , L;φ) = βFd

(
T ;φ − π2

L2

)
+

1

L
βF

(D)
d,surf.

(
T ;φ − π2

L2

)

− 2

(4π)
d
2

(
φ − π2

L2

) d
2 ∞∑

l=1

Kd
2

(
2lL

√
φ − π2

L2

)
(
lL

√
φ − π2

L2

) d
2

, (5.11)

where

βF
(D)
d,surf.(T ; σ) = 1

2

[
Ud(σ ) − 1

2Ud−1(σ + 4) − 1
2Ud−1(σ )

]
accounts for size-dependent contributions stemming from the surfaces. In the following we will
discuss the finite-size behaviour of the free energy and its dependence on the dimensionality
d. Again we discuss separately the cases d = 3 and 3 < d < 4 imposed by the validity of the
expansion (3.21) for Ud(z) and Ud−1(z), simultaneously.

For d = 3, we use the expansions (3.21) and

U2(z) = U2(0) − 1

4π
z ln z +

1

4π
(1 + 5 ln 2)z + O(z2 ln z) (5.12)

to obtain the singular part of the free energy density

βf
(D)
s,3 L3 = 1

2
�(y2 − π2) − 1

12π
(y2 − π2)

3
2 +

1

2

[
Kc,3 − 1

2
W2(4) − 1 + 5 ln 2

8π

]
(y2 − π2)

+
1

16π
(y2 − π2) ln(y2 − π2) − 1

8π
(y2 − π2) ln L

− 1

8π

√
y2 − π2 Li2(exp[−2

√
y2 − π2]) − 1

16π
Li3(exp[−2

√
y2 − π2]).

(5.13)

At the shifted critical point K
(D)
s,3 (see (5.7)), f

(D)
s,3 takes a scaling form, as it has been pointed

out in Barber (1974). Note that at the bulk critical temperature f
(D)
s,3 is proportional to L−3 ln L

implying that the finite size-scaling hypothesis (1.1) breaks down for the mean spherical model
with Dirichlet boundary conditions at d = 3, while in more realistic models the finite-size
scaling is valid and the critical Casimir amplitude can be estimated (Krech and Dietrich 1992).

Another expression for the scaling behaviour of the singular part of free energy density
was obtained by Barber (1974). In our notations it reads

βf B
s,3L

3 = 1

2
�y2 − y2

8π
ln L +

y2

2

[
Kc,3 − 1

2
W2(4) − 7 ln 2

8π

]
+ Q0(y), (5.14)

where

Q0(x) = π

8

[
R(−1) − R

(
x2

π2
− 1

)]
(5.15)

with

R(z) =
∫ z

0
ln

sinh π
√

w

π
√

w
dw.

By comparing (5.13) and (5.14) we see that the first three terms on the right-hand side
of (5.14) have their counterparts in (5.13) obtained through the replacement y2 → y2 − π2.
It seems that the terms linear in π2 and the term proportional to L−3 ln L were neglected in
(5.14). It remains to see what is the situation for the rest of the terms. Unfortunately no direct
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Figure 1. Behaviours of the functions Q0(y) (5.14) and D(y) (5.16) against y.

analytic comparison can be made, despite the fact that the integral representation (5.15) can
be expressed in terms of polylogarithms. To achieve the comparison recourse must be sought
in numerical methods, so we plot the function Q0(y) and

D(y) = 1

16π
(2 ln 2 − 1)(y2 − π2) − 1

12π
(y2 − π2)

3
2 +

1

16π
(y2 − π2) ln(y2 − π2)

− 1

8π

√
y2 − π2 Li2(exp[−2

√
y2 − π2]) − 1

16π
Li3(exp[−2

√
y2 − π2])

(5.16)

from (5.13) which contains terms that are not present in (5.14) and those that were apparently
neglected. The result is shown in figure 1.6 We see clearly that both functions have similar
behaviours and are shifted one from the other by a constant. This has been checked by
computing the derivatives of both functions which gives us the same result. The difference
between the two functions is estimated to be

Q0(y) − D(y) = π

16

[
−1 + ln(4π2) +

1

π2
ζ(3)

]
. (5.17)

Thus, the scaling functions (5.13) and (5.14) are equal up to an irrelevant constant that does
not become singular at the bulk critical point.

For 3 < d < 4, using the asymptotic expansion (3.21), the scaling form of the singular
part of the free energy density (5.11) reads

2f
(D)
s,d Ld = �(y2 − π2) + Ld−3

[
Wd(0) − 1

2
Wd−1(0) − 1

2
Wd−1(4)

]
(y2 − π2)

+
2

(4π)
d
2

(y2 − π2)
d
2

[
1

d


(
2 − d

2

)
−

√
π

d − 1


(
3 − d

2

)
1√

y2 − π2

]

6 The numerical evaluation of the named expressions was performed with the aid of WOLFRAM MATHEMATICA
6.
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− 2

(4π)
d
2

(y2 − π2)
d
2

∞∑
l=1

Kd
2
(2l

√
y − π2)

(l
√

y2 − π2)
d
2

. (5.18)

Just like the equation for the spherical field we find that the surface contributions to the
singular part of the free energy violates the standard finite-size scaling hypothesis (1.1). A
reformulation of the scaling behaviour would require the introduction of a function with two
arguments: the scaling variable � and a scaling variable that incorporates the size-dependent
term Ld−3.

6. Neumann boundary conditions

6.1. Equation for the spherical field

To investigate the finite-size effects in the mean spherical model of finite thickness subject
to Neumann boundary conditions, through equation (2.8), we need to estimate the large
asymptotic behaviour of the sum

S(N)
d,L (φ) =

L∑
n=1

Wd−1

[
φ + 2 − 2 cos

π(n − 1)

L

]

= 1

2

2L−1∑
n=0

Wd−1

[
φ + 2 − 2 cos

πn

L

]
− 1

2
Wd−1 [φ + 4] +

1

2
Wd−1 [φ] . (6.1)

The sum in the last line is exactly S(N)
d,2L(φ) (see (3.3)). Consequently, from (6.1) and (3.10),

the equation for the spherical field is given by

K = Wd(φ) − 1

2L
[Wd−1(φ + 4) − Wd−1(φ)] +

4

(4π)d/2
φ

d
2 −1

∞∑
l=1

Kd
2 −1(2lL

√
φ)

(lL
√

φ)
d
2 −1

, (6.2)

to the leading order in L−1.
In addition to the restriction on d imposed by the fact that d = 2 is the lower critical

dimension and d = 4 is the upper one, which is contained in Wd(z) there is another one
originating from Wd−1(z) that restricts the validity of the asymptotic behaviour (3.12) to the
interval 3 < d < 4. For that reason we will investigate in some details only the cases d = 3
and 3 < d < 4. The remaining part of the interval i.e. 2 < d < 3 requires special treatment.

At d = 3, equation (6.2) takes the simple form

K − Kc,3 = − 1

2L

[
W2(4) − 5

4π
ln 2

]
+

1

4πL
ln L − 1

4πL
ln[2L

√
φ sinh(L

√
φ)]. (6.3)

This equation was derived in Dantchev and Brankov (2003) using a method based on Barber and
Fisher (1973). At the bulk critical temperature Kc,3 the spherical field behaves as φ ∼ L−1 to
the leading order assuming L

√
φ 
 1. In the limit L

√
φ � 1 one would expect a logarithmic

behaviour as pointed out by Dantchev and Brankov (2003). At the shifted critical temperature,
defined through (Dantchev and Brankov 2003)

K
(N)
s,3 = Kc,3 − 1

2L

[
W2(4) − 3

4π
ln 2

]
+

1

4πL
ln L, (6.4)

equation (6.3) may be written in a scaling form. An inspection of expression (6.4) shows that
the predictions of the theory of finite-size scaling for the shifted critical temperature is not
fulfilled due to the presence of the term proportional to ln L.
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For 3 < d < 4 the scaling form of the equation for the spherical field (6.2) is given by

� = 1

2
Ld−3 [Wd−1(4) − Wd−1(0)] − 1

(4π)d/2

[


(
2 − d

2

)
−

√
π

y


(
3 − d

2

)]
yd−2

− 4

(4π)d/2
yd−2

∞∑
l=1

Kd
2 −1 (2ly)

(ly)
d
2 −1

. (6.5)

Here again we used the notations � = L−1/ν(Kc,d − K) and y = L
√

φ. As above for the case
of Dirichlet boundary conditions the standard finite-size scaling hypothesis is violated here
as well and would need a reformulation in order to take into account the term proportional
to Ld−3. Furthermore, equation (6.5) shows that the leading asymptotic behaviour of the
finite-size shift of the critical temperature is L−1, which is not consistent with the predictions
of the theory of finite-size scaling.

6.2. Free energy density

The free energy density (2.6) in the case of Neumann boundary conditions is obtained by
analysing the sum

P(N)
d,L (φ) =

L∑
n=1

Ud−1

[
φ + 2 − 2 cos

π(n − 1)

L

]

= 1

2

2L−1∑
n=0

Ud−1

[
φ + 2 − 2 cos

πn

L

]
− 1

2
Ud−1 [φ + 4] +

1

2
Ud−1[φ] (6.6)

which contains the term P(p)

d,2L(φ), equivalent to (3.17). Using (6.6) and (3.18) we obtain
explicitly

βF
(N)
d (T , L;φ) = βFd(T ;φ) +

1

L
βF

(N)
d,surf.(φ) − 2

(4π)
d
2

φ
d
2

∞∑
l=1

Kd
2
(2lL

√
φ)

(lL
√

φ)
d
2

, (6.7)

where

βF
(N)
d,surf.(φ) = 1

4Ud−1[φ] − 1
4Ud−1[φ + 4] (6.8)

is the surfaces contribution.
Again we are faced with a situation where we have to restrict the validity of our expressions

due the expansion (3.21), which should hold for Ud(z) and Ud−1(z) simultaneously. Here we
consider the cases d = 3 and 3 < d < 4 separately.

At d = 3, using (3.21) and (5.12) the singular part of the free energy density (6.6) reads

βf
(N)
d,3 L3 = 1

2
�y2 − 1

12π
y3 − 1

4

[
W2(4) − 1 + 5 ln 2

4π

]
y2 − 1

8π
y2 ln y +

1

8π
y2 ln L

− 1

8π
y Li2(e

−2y) − 1

16π
y Li3(e

−2y). (6.9)

Here again we have a logarithmic dependence on L and surface contributions leading to the
violation of the finite-size scaling hypothesis (1.1). This makes the spherical model unsuitable
for the evaluation of the Casimir amplitude for O(n) systems with Neumann boundary
conditions. The value of this quantity is known from renormalization group (Grüneberg
and Diehl 2008).
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For 3 < d < 4, the singular part of the free energy reads

βf
(N)
s,d Ld = 1

2
�y2 +

1

4
Ld−3 [Wd−1(0) − Wd−1(4)] y2 +

1

2(4π)d/2

×
[

1

d


(
2 − d

2

)
+

√
π

d − 1


(
3 − d

2

)]
− 2

(4π)d/2
yd

∞∑
l=1

Kd
2
(2ly)

(ly)
d
2

. (6.10)

This suggests that standard finite-size scaling hypothesis (1.1) is not valid for the mean
spherical model confined to a film geometry with Neumann boundary conditions. Similar to
the case of Dirichlet boundary conditions a modified finite-size scaling hypothesis is necessary
to get the appropriate scaling behaviour.

7. Neumann–Dirichlet boundary conditions

7.1. Equation for the spherical field

To extract the finite-size effects from (2.8) in the case of mixed boundary conditions i.e.
Neumann and Dirichlet on the bounding surfaces, the sum to be considered is

S(DN)
d,L (φ) =

L∑
n=1

Wd−1

[
φ + 2 cos

π

2L + 1
− 2 cos

2π
(
n − 1

2

)
2L + 1

]

= 1

2

2L∑
n=0

Wd−1

[
φ + 2 cos

π

2L + 1
− 2 cos

2π
(
n + 1

2

)
2L + 1

]

− 1

2
Wd−1

[
φ + 2 cos

π

2L + 1
+ 2

]
. (7.1)

By inspection of the sum in the second line we see that the analysis of this case is tightly
related to that of antiperiodic boundary conditions. In other words this sum is exactly
S

(a)
d,2L+1

(
φ + ω

(ND)
0

)
with S

(a)
d,2L+1(σ ) defined in (4.2a) meaning that in this case the finite-

size corrections correspond to a film of thickness 2L + 1 subject to antiperiodic boundary
conditions. Then, along lines similar to the analysis of section 4, for the equation for the
spherical field we get, for arbitrary d,

K = Wd

(
φ − π2

4L2

)
+

1

2L

[
Wd

(
φ − π2

4L2

)
− Wd−1

(
φ − π2

4L2
+ 4

)]

+
4

(4π)d/2

(
φ − π2

4L2

) d
2 −1 ∞∑

k=1

(−1)l
K d

2 −1

(
2lL

√
φ − π2

4L2

)
(
lL

√
φ − π2

4L2

) d
2 −1

(7.2)

to the leading order in L−1. As before we will restrict ourselves between the lower and the
upper critical dimensions. For 2 < d < 4, using (3.12), we have

� =
(
y2 − π2

4

) d−2
2

(4π)d/2

⎡
⎣∣∣∣∣

[
2 − d

2

]∣∣∣∣ − 4
∞∑
l=1

(−1)l
K d

2 −1

(
2l

√
y2 − π2

4

)
(
l

√
y2 − π2

4

) d
2 −1

⎤
⎦

− 1

2
Ld−3[Kc,d − Wd−1(4)]. (7.3)

With y = L
√

φ and � = L1/ν(Kc,d − K). The solution of this equation depends explicitly
on the size L which leads us to the conclusion that the standard finite-size scaling is violated
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here as well. To resolve this issue one would need a modified finite-size scaling assumption.
This remains valid also for the corresponding finite-size shift of the critical temperature whose
leading asymptotic behaviour is L−1, rather than the predicted L−1/ν . Remark however that
for d = 3 the term Ld−3 vanishes and the finite-size scaling is expected to hold. Indeed, at
d = 3, (7.3) turns into the simple form

4π� = ln 2 cosh

√
y2 − π2

4
− 2π [Kc,3 − W2(4)], (7.4)

This equation is identical to equation (4.31) of Dantchev and Brankov (2003) obtained by a
method adapted after Barber and Fisher (1973). The positive solution of (7.3) may be written
in the scaling form

y = g(ND)(�), (7.5)

where the universal scaling function is given by

g(ND)(�) =
[

π2

4
+

(
arccosh

[
1

2
exp

(
4π� + 2π

[
Kc,3 − W2(4)

])])2
]1/2

. (7.6)

At the bulk critical temperature, � = 0, we find the critical amplitude

y0 = g(ND)(0) = 1.456 84 . . . . (7.7)

7.2. Free energy density

The free energy density from equation (2.6) in the case of Neumann–Dirichlet is obtained as
a result of the analysis of the sum

P(DN)
d,L (φ) =

L∑
n=1

Ud−1

[
φ + 2 cos

π

2L + 1
− 2 cos

2π
(
n − 1

2

)
2L + 1

]

= 1

2

2L∑
n=0

Ud−1

[
φ + 2 cos

π

2L + 1
− 2 cos

2π
(
n + 1

2

)
2L + 1

]

− 1

2
Ud−1

[
φ + 2 cos

π

2L + 1
+ 2

]
. (7.8)

So apart from a surface term (the last term) the asymptotic form of the free energy has a similar
expression to (4.4a) in the case of the antiperiodic boundary conditions with the replacements
ω

(a)
0 → ω

(ND)
0 and L → 2L i.e.

βF
(ND)
d (T , L;φ) = βFd

(
T ;φ + ω

(ND)
0

)
+

1

L
βF

(ND)
d,surf.

(
φ + ω

(ND)
0

)

− 2

(4π)d/2
(φ + ω(ND))

d
2

∞∑
l=1

(−1)l
K d

2

(
2lL

√
φ + ω

(ND)
0

)
(
lL

√
φ + ω

(ND)
0

) d
2

, (7.9)

with the surface contribution

F
(ND)
d,surf.(σ ) = 1

4 [Ud(σ ) − Ud−1(σ + 4)]. (7.10)

For 2 < d < 4, the singular part of the free energy density follows also from that for
antiperiodic boundary conditions (4.10) and the corrections originating from the surfaces. In

19



J. Phys. A: Math. Theor. 41 (2008) 375002 H Chamati

this case we get

βf
(ND)
s,d (y, �) = 1

2
L−d�

(
y2 − π2

4

)
+

1

4
L−3[Kc,d − Wd−1(4)]

(
y2 − π2

4

)

+ L−d

(
y2 − π2

4

) d
2

(4π)d/2

⎛
⎝ 1

d


[
2 − d

2

]
− 2

∞∑
l=1

(−1)l
K d

2

(
2l

√
y2 − π2

4

)
(
l

√
y2 − π2

4

) d
2

⎞
⎠ . (7.11)

Here again there is a term proportional to Ld−3 that violates the standard finite-size scaling
hypothesis (1.1) in the vicinity of Kc,d and its modification is necessary to get the correct
scaling. At d = 3 there is no explicit dependence in L. In this case, the critical amplitude of the
singular part of the free energy density is obtained from (7.11). Thus the Casimir amplitude for
the three-dimensional mean spherical film subject to Neumann–Dirichlet boundary conditions
is

�(ND) = 0.019 22 . . . . (7.12)

This exact result is in conformity with that of Krech and Dietrich (1992) obtained using
renormalization group. Similar to the case of antiperiodic boundary conditions the Casimir
amplitude is positive but smaller in magnitude indicating a weaker repulsing force between
the surfaces bounding the system.

8. Discussion

We investigated the finite-size effects in the d-dimensional ferromagnetic mean spherical
model of finite thickness L subject to different kinds of boundary conditions: periodic (p),
antiperiodic (a), Dirichlet (D) and Neumann (N) on both surfaces bounding the model, and
a combination of Neumann and Dirichlet on each surface (ND). We proposed a method for
the computation of the finite-size corrections of the free energy for arbitrary dimension. Our
analysis showed that for Dirichlet and Neumann boundary conditions the finite-size effects
are essentially equivalent to the case of periodic boundary conditions for a film of thickness
2L and additional surface terms. Similarly, the case of Neumann–Dirichlet was found to be
related to the case of antiperiodic boundary conditions with thickness 2L.

The free energy density and the equation for the spherical field were computed for
a film with arbitrary dimension d subject to the different boundary conditions. In the
particular case d = 3, our general expressions for (D), (N) and (ND) reduce to those
obtained by Barber and Fisher (1973) and Danchev et al (1997), Dantchev and Brankov
(2003). It is found that the singular part of the free energy density has the standard finite-
size scaling form for 2 < d < 4 only in the cases (p) and (a) i.e. for those boundary
conditions which do not break the translation invariance of the model. In these cases we
estimated the critical amplitude of the singular part of the free energy and obtained the
values: �(p) = −2ζ(3)/(5π) = −0.153 051 . . . and �(a) = 0.274 543 . . . for (p) and (a),
respectively. Interpreted in terms of the Casimir effect this imply that in the case (p) we have
fluctuation-induced attraction between the surfaces bounding the model and a repulsion in the
case (a).

For a film subject to (D) or (N) the critical point of the film is shifted from the bulk
one by surface and finite-size terms, whose leading asymptotic behaviour is proportional to
L−1. This result disagrees with the scaling behaviour of the finite-size shift predicted by the
theory of finite-size scaling. In the vicinity of the bulk critical point the standard finite-size
scaling is not valid in general. At d = 3, the solution of the equation for the spherical field
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is proportional to L−3 for (D) and to L−1 for (N), while the singular part of the free energy
exhibits a logarithmic dependence on L. For 3 < d < 4, the standard finite-size scaling for
the singular part of the free energy needs to be modified.

In the case (ND), the film has its own critical point shifted from the bulk one by surface
terms, as well as finite-size effects. The finite-size shift of the critical temperature and the
scaling form of the free energy do not conform with the theory of finite-size scaling. For
2 < d < 4, the standard finite-size scaling has to be modified in the neighbourhood of the bulk
critical temperature. A surprising fact is that the finite-size scaling hypothesis is again valid at
d = 3. At Tc, the square root of the equation for the spherical field is equal to 1.456 84 . . . L−1

and the Casimir amplitude is found to be �(ND) = 0.019 22 . . . i.e. a weaker than the case (a)

fluctuation-induced repulsion.
It is well known that the mean spherical model is not able to capture the gross features of

O(n) models when it is subject to boundary conditions that break the translational invariance.
To solve this problem remaining in the framework of the spherical model one would introduce
additional spherical fields to ensure the proper behaviour of the surface spins (Singh et al
1975). Otherwise one can try recovering the equivalence between the spherical model and
O(n) spin models by imposing spherical constraints ensuring the same mean square value for
all spins of the system (Knops 1973). In the case of a film geometry this is equivalent to having
a spherical constraint on each layer of the system with a space-dependent spherical field along
the finite direction (Hikami and Abe 1976, Bray and Moore 1977, Ohno and Okabe 1983)
whose relaxed version reduces to the model under consideration. Even in this case an accurate
study of the problems related to finite-size scaling remains rather untractable analytically (see
e.g. Hikami and Abe 1976, Brézin 1983).
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